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RADAR PULSE COMPRESSION AND
ELECTROMAGNETIC INTERFERENCE (EMI)

1. INTRODUCTION

Electromagnetic interference (EMI) is a well-known problem that affects most radar and tele-
communication systems. In the past, radars have had relatively narrow bandwidths and EMI between
radars was kept to a minimum by frequency allocation to different frequency bands. However, the
current trend is toward wide operating agile and instantaneous bandwidths, possibly 50% or more,
which necessarily overlap. EMI reduction therefore requires other means than frequency allocation to
different bands, possibly noninterfering coded waveforms, as pursued in this report.

EMI, in a broad sense, includes intrasystem problems as well as intersystem problems. A
number of solutions have been used or proposed to reduce EMI, based on the characteristics of radi-
ated interference, transmission path, and receiver configuration. They also depend on how the prob-
lems are defined, that is, from the viewpoint of signal transmission, signal reception, or both. The
general methodology may include: (1) grounding and bonding, (2) shielding, (3) use of radiation
absorption material (RAM) or chemical agent, (4) filtering, (5) frequency management, (6) interfer-
ence cancellation system (ICS), (7) equipment design such as the use of multicouplers, (8) advanced
signal processing via state-of-the-art technology and expert systems, and many others. From a radar
aspect, the electromagnetic interference is considered to be externally generated and does not include
clutter and intrasystem noise. Generally, differences between desired signals and multipath/externally
generated signals can be used to suppress the interference and to augment the desired signals. Typical
interference suppressers are sidelobe blankers, defruiters, adaptive arrays, mainlobe notchers,
transmission/predetection filters, coherent sidelobe cancellers or adaptive interference cancellers [1],
which directly couple a sample of the interference waveform from the transmitter sources to the
receiver.

To date, besides the above methodology, not much work has been reported in eliminating EMI
from the viewpoint of basic signal structure. In this report, we propose a fundamental approach to
eliminating EMI by applying complementary coded signals. We consider transmitted multiple-pulsed
(dissimilar) waveforms as a burst of pulses that are pulse-compressed by complementary sequences.
We then search a class of these characterized signals in which the property of mutual orthogonality is
attained. As a result, different signals in a specifically derived set can be assigned to different radars
on the same or different platforms in which the signals are mutually orthogonal in the sense that
cross-correlation of signals is zero. Therefore, the interference from other radar sources may be
reduced. Since the derived/applied signals are all complementary coded waveforms, the individual
signal, as we refer to its composed multiple pulses, is presented in an orthogonal matrix form. This
implies that the signal autocorrelation (without considering Doppler shift) is zero at least over the
unambiguous range except at the matched point. Thus, zero sidelobes of the stationary targets are
attained. Specific waveforms in this category have the above property extended beyond the maximum
unambiguous range. When the signal is continuously transmitted and matched to the reference for
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specific range intervals, then the stationary clutter or targets from the mismatched range intervals are
eliminated. The methodology described here provides a means of fundamentally eliminating EMI
without degrading the radar performance.

In Section 2, effects caused by the use of pulse compression waveforms against electromagnetic
interference are described. We consider a practical example of using a transmission filter for elim-
inating interference to the Air Traffic Control Radar Beacon System (ATCRBS) airborne Mode S
transponder and Traffic Alert and Collision Avoidance System (TCAS) receiver in an upgraded SPS-
49 system. Then, in Section 3, we detail the fundamental approach to eliminating EMI through the
use of complementary coded signals. Advanced waveform synthesis is included in this section to
solve imperfection of orthogonality in the presence of Doppler shift.

2. TRADEOFFS BETWEEN RADAR PERFORMANCE AND EMI SUPPRESSION

It is the current trend in radar design to have a relatively wide bandwidth (both operating agile
bandwidth and instantaneous bandwidth). As a result, very high resolution can be achieved for radars
to provide improved clutter suppression for the detection of small targets. Required peak power is
reduced. In addition, unwanted EMI can be notched out through filtering or ICS. Pulse compression
waveforms are thus widely used. The commonly used waveforms in radar are frequency, phase, or
amplitude modulated. The popular pulse compression waveforms are:

(1) linear frequency modulation (chirp) waveforms,

(2) Barker and pseudorandom binary phase codes,

(3) step frequency modulation (step chirp) waveforms,

(4) step-frequency-derived polyphase codes such as Frank and P 1 codes,

(5) linear-frequency-derived polyphase codes such as P3 and P4 codes,

(6) complementary codes, and

(7) Huffman codes.

In the above, the complementary codes can be binary or polyphase codes and the Huffman codes
are amplitude and phase modulated. For the unweighted linear chirp waveform, its autocorrelation
function has the form of sin x Ix, which shows high peak sidelobes. However, the sidelobe level can
be brought down by applying appropriate weighting functions, e.g., -42.8 dB peak sidelobe by using
a Hamming weighting. The chirp waveforms have range-Doppler coupling properties and are
Doppler tolerant.

The binary codes, however, have relatively poor sidelobes. For an aperiodic pseudorandom
code of length N, the peak voltage sidelobe best obtainable is about 1/N. It is the ideal case that the
voltage sidelobe level reaches 1/N2 as seen in the Barker or periodic pseudorandom codes. However
the binary phase-modulated waveforms are not Doppler tolerant. Other codes listed in (3) through (7)
possess specific characteristics and may show combined favorable properties different from the
forementioned codes. For example, the polyphase Frank codes have lower voltage sidelobes of about
1 /(7 2 N) and are more Doppler tolerant than the binary codes. Many useful radar waveforms, with
associated properties, are described in the literatures (e.g. [2-4]).
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Fig. (a) - An autocorrelation function defined
by signal convolution

C (t)
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ACF

Fig. l(b) - An autocorrelation function derived
through DFT processing of signal spectra

As noted before, we assume that the signal spectrum of Fig. 2(a) has a bandwidth from 850 to
1400 MHz, approximately between the mainlobe nulls. Then the interference located at 1030 MHz
and 1090 MHz (Table 1) can be easily visualized. We consider first that the interference is notched
out by narrow bandstop filters of 1 MHz centered at 1030 MHz and 1090 MHz. Fig. 3(a) illustrates
the resulting transmitted signal spectrum. Following Fig. l(b) and performing DFT processes, we
obtain a matched filter output as shown in Fig 3(b). The figure indicates nearly the same sidelobe
level as in Fig. 2(b) and shows little performance degradation because of the use of a cancellation
filter.

If the interference needs to be notched out by a filter of larger bandwidth such as specified in
Table 1, then the corresponding transmitted signal and the resulting matched filter output are obtained
in Fig. 4. It is shown that the peak sidelobe of the output response is raised to approximately
-19 dB. Apparently the radar detection capability is substantially affected by the insertion of a filter
for suppressing EMI. In a practical application, we may compensate somewhat by using a signal hav-
ing a longer code length. Figures 5 through 7 (corresponding to Figs. 2 through 4) show the power
spectra and the associated matched filter outputs for the Frank coded signal with a code length of 196
elements. The peak sidelobes are -32 and -24 dB, respectively, in the above narrow- and wide-
passband notching cases (Fig. 6 and 7).
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Fig. 3(a) - 100-element Frank code spectrum
with very narrow frequency notching
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Fig. 3(b) - The matched filter output for the
Frank code spectrum of Fig. 3(a)
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Fig. 4(a) - 100-element Frank code spectrum with
very wide frequency notching

50 100 150

SAMPLE NUMBER (CODE ELEMENT)

Fig. 4(b) - The matched filter output for the
Frank code spectrum of Fig. 4(a)
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Fig. 5(a) - 196-element Frank code spectrum
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Fig. 6(a) - 196-element Frank code spectrum with
very narrow frequency notching
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Fig. 6(b) - The matched filter output for the
Frank code spectrum of Fig. 6(a)
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Fig. 7(a) - 196-element Frank code spectrum with
very wide frequency notching
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Fig. 7(b) - The matched filter ouput for the
Frank code spectrum of Fig. 7(a)
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Figure 8 shows the aperiodic autocorrelation function of the above signal. It can be seen, to the max-
imum unambiguous range interval, that the sum of the autocorrelation functions of all array sequences
is zero except at the matched point. Note that the correlation functions appearing in the second, third,
. . time-around intervals are generally nonzeros.

6L
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UNAMBIGUOUS TIME TIME TIME TIME TIME TIME TIME

INTERVAL AROUND AROUND AROUND AROUND AROUND AROUND AROUND
INTERVAL INTERVAL INTERVAL INTERVAL INTERVAL INTERVAL INTERVAL

Fig. 8 - A periodic autocorrelation of the multiple signals represented
by the complementary array code A

A matrix to be sufficiently a complementary array must be an orthogonal matrix in a sense that
the column vectors of the matrix are mutually orthogonal [4]. Consequently, the Hadamard matrices,
the Frank and P4 code square matrices, and matrices generated from a pseudorandom shift register
code (such as A above) contain complementary sequences. Matrix A is formed after permutation by a
7 x 7 submatrix consisting of a simple pseudorandom code (1 -1 - -1 1 -1) and its rota-
tions and an eighth row and column of s.

It is interesting, as noted in Ref. 4, that the polyphase Frank code and P4 code square matrices,
when considered as multiple-pulsed waveforms, have zero autocorrelation (in a periodic sense) beyond
the maximum unambiguous range. Therefore when the signal is continuously transmitted (in a
periodic sense) and matched to the reference for a specific range interval, then the stationary clutter
from the mismatched range interval is eliminated. If the filter is matched to the most recently
transmitted code, the sidelobes of stationary targets in the unambiguous range are zeros. In a sense of
zero cross-correlation, instead of zero autocorrelation, the above complementary coded waveforms
may be applied to a multisensor operation so that EMI is eliminated. However, a search of "orthog-
onal sets" containing similar complementary-coded signals is needed. Consequently, different signals
in a derived set can be assigned to different radars in which the applied signals are mutually orthogo-
nal. Interference is therefore eliminated among different radar sources.

An orthogonal set S may be formed through orthogonal transformation of a specific array matrix
of interest. For example, let the following A be a k X n complementary array matrix (here,
k = n = 4) and S = [A I, A 2 , . . for which A , A 2 , . . are the matrices to be searched for:

12
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AO = -1 1 -1 1 . (4)

Then one possible S (corresponding to a Walsh vector set W) can be obtained by Ai = A Ti with T
an n x n diagonal matrix and T7I = Vi e W, where Vi is a Walsh vector and I is an n-dimensional
identity vector. The procedures, with AO given above, are illustrated as follows. For--a Walsh vector
set defined by W = IV 1 , V2 , V3 , V4} with VI = (1 1 1 1)T, V2 (1 1 -1 1 )T,

V3 = (1 -1 1 - 1 )T, and V4 = (-1 1 1 -. )T, we can easily derive that

1 1 1 (7)

and

A4= 1111], (8)

In the above, S [ A I, A 2 , A 3 , A 4 and the multiple-pulsed waveforms represented by the
matrices Al,~ A 2, A 3 and A4 are mutually orthogonal. In other words, any pair of the signals with
their representing matrices belonging to S have zero cross-correlation functions. Moreover, each sig-
nal is represented by an orthogonal matrix so that its autocorrelation is zero except at the matched
point. Figure 9 is the aperiodic autocorrelation function for the signal represented by A-. Figure 10
illustrates aperiodic cross-correlation between signals represented by A 2 and A 3.

In the example shown above, the derived set S is not unique. For instance, let the Walsh vector
beW= IV1 , V"2, V,, /4 1, or W V IV~ V 2 ,VY3 , V4J with VI -1- -I _]T'

[-1 -1 1 1 ]T, V3 = =-1 -1 -l 1]T and V4 = 1 -I 11T* Then two more sets
containing mutually orthogonal signals are obtained. In fact, a total of 32 sets can be found in this

13
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Fig. 10 A periodic cross-correlation between
the multiple signals A2 and A3
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example. The above procedures can be applied to a different seed matrix AO to obtain a new class of
multiple-pulsed signals of interest. If A0 is a polyphase Frank code matrix, additional properties,
such as the periodic autocorrelation functions being zero over ambiguous range intervals, are
observed.

3.2 Advanced Waveform Synthesis

As discussed in previous sections, mutually orthogonal waveforms are fundamentally applicable
in solving EMI problems. With appropriate use of multiple-pulsed signals selected from a derived
orthogonal set containing complementary codes, the radar could suppress interference from other
radar sources and possibly eliminate ambiguous range targets or clutter. However, orthogonality of
the complementary codes are not preserved in the presence of Doppler shift. That is, the temporal
sidelobes of matched filter outputs are no longer zeros. The compressed pulse peak is also reduced.
For example, if the Doppler shift in angle is r for the separation between two complementary
sequences, then the sidelobes of the autocorrelation of these two sequences will add up instead of sub-
tract from each other. To minimize this problem, we examine the option of using orthogonal
multiple-pulsed waveforms incorporated with an inner-outer coding scheme. Here a train of pulses,
called the outer code, is "modulating" previously discussed complementary codes (the inner code).
The inner code sequences are indeed "determined" by a preselected outer code as described next.
The outer code may also be called a macro-sequence [10].

A synthesized pulse train is simply shown in Fig. 1. The pulse train consists of N, pulses with
a pulse repetition interval T. Each pulse is pulse-compressed by a complementary sequence confined
to a generalized array matrix. The selection of which complementary sequence to be modulated is
determined by a predefined outer code. Assume each complementary sequence has N1 subpulses with
a subpulse length of 6 (see Fig. 11). Then, for the kth pulse,

N -1

Uk = E (t)e
n =0

whereh(t)=1 and O = Oorrwithn c t < (n + )and n =0, .. N 1 -. Wedenote
N2 -1

the resulting waveform by S Uk) with kT t < (C + N 1 6 and k = 0 1, , N2 - I
k=O

According to Eq. (2), the matched filter outputs are related to

N2T N2 -1

{(T. &) = 5 ; U*(t) Uk(t + T)eiwtdt (9)
0 k=O

or

N 2 -! KT+N,1 6

4(r, ) E 5 (t - kT) Uk(t - kT+)ejWtdt. (10)
k=O kT

By replacing the parameter t -kT by t, the above equation becomes

N2 - N. 6 -

{T, ) = E |u(t) Uk(t + r)e e dt
k=O 0

15



CHING-TAI LIN

1*~

N1 I I -

1F I]T 111]
U (t)

T

-,'V

U1 (t)

Fig. 11 - A synthesized pulse train

N2 -1

t(r, ) = E UkejokT
k =0

where

N, 6

Uk = X Uk(t) Uk(t + r)eiw'dt.
0

The results of Eqs. (11) and (12) are particularly interesting since their explicit forms can be
easily analyzed. As noted above, the assignment of Uk is determined by a predefined outer code mk.
To be general, we consider the complementary array matrix has the order of 4 x N1 and is
represented by an array matrix (a(t) b(t) c(t) d (t))T. Consequently, one of the four complemen-
tary sequences would be assigned to k where k = 1,2, . . , N2 . Naturally, a good choice of the
outer code Mk is the Quadraphase sequence that can be generated by the Barker code or any other
binary-phase codes [11] if a longer code length is desirable. Here Uk is assigned as follows:
uk = a (t), b (t), c (t) or d (t) if Mk = 1, -1, j or -j, respectively.

As a result, Eq. (12) can be rewritten as

X= I (M2 + l)(mk + 1) 

+
(mk - l)Mk + j)

-4j
-c*(t) + (m - l)(mk - j) d*(t

4j 

C(M2+ 1)(Mk+ 1)x k a (t +,) +
(mk + 1)(mk -

-4

(mk - l)(mk j) c(t + ) +

-4]

(M2 - )(Mk - )

4j
d(t + r)J e tdt

16

[F T1

or

U
N2-1

(1 1)

(12)

( ± l)(ink - 1)b

-4

+

-b(t + r)

(13)
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If we consider the matched filter outputs in the unambiguous range interval only, then

N 2
r 2 + 1)2 (mk + 1)2

i/4r, ) = ,16 4' (T, ) +
k =0L

2 _ )2 + j)2
(ink -)(ink+

-16

(m + 1)2 (Mk - 1)2

16 Ab(T, )

iPc(T, ) +

where 4'a(r, co) = ja * (t) a (t + r)e itdt. The same definitions apply to 4 '(br, CO), V' (-, Cc)

Od(T, W).

After simplification, one can easily derive

i(r, ) = ± (#(T, ) + rb(T, ) + ;AtT, )
4

+ 1 (i(T,
4

cc) + Vb (T, c) - c(

N2 -

+ d(T, )) E e jkT

k=o

N2 -

cW) - Vd(r, )) E k e
k =O

1 N2 -1 kT _ l( cc) -PdN2Q- 1 N2 - 1
+ - (a (Q, ) - 4 'b(r, )) E mk e 4 4(V(T, L) - d(T, )) jMkej

4 k=O k=O

1 N2 -1 N 2 - 1

- (i 0 (T, ) - 4'b(7, C)) E m3ejwkT ±, C) - 'd 3EjwkT

k=O k=0

< | (ifa(T, c) + V)b1b(, c) + 4' (7, ) + 'Pd(, )) 
4

N2 - 1

k =0

+ ± I (4aCT, c) + 4'b(r, ) - ,&(r, c) - #d (, W))
4

± I- (4'a (7, Cc)-xbbr, cc)-4,(7, cc)+44,Cr, cc))
4

± - (O,(T, cc) - 4b(r, cW) + 4'(r, c) - d(7, w))
4

N2 - I

k =0

N2 - 1

k =0

mk eIwkT

Mke jkT

N2 -

k = k e
k =0

(16)

In Eq. (16), the summation terms are in DFT format, and hence i(/r, ) can be easily calculated if the

complementary array matrices and outer codes {mk} are given.

17

± ejWTk, (14)

and

and

IQr' c)

(15)

2 1)2 _j)2
(Mk (Mk �d (T, W_ 16

ejcokT
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In Eq. (16), one can also show that

N 2 - sin N2-rz (7
| | s kiA (17)

where = 27rf, and z =JT is a normalized frequency parameter. If the Quadraphase sequence fmk}

is generated from a 13-element Barker code (that is, [Mk} = {1, j, -1, -j, 1, -j,
1, -j, 1, -j, -1, j, 1}), then as derived in Ref. 11,

N2 1 I cos 267r) 1/2

k Mke= = 12 + cos2 z (18)

We can also easily derive that

r cos N2irZCOS N 7Zodd
N 2 - J COS ii-Z 

k iei = sin N27rz (9
k=O L c | N 2 even

COS rZ

and

N 2 - N 2 - coI~r 1/2
| inmei 7k T - = = (N 2 -1) + ] . (20)

k=O k=O Lcos 2rz

For this specific case, with the analytical results shown in Eqs. (15) through (20), the matched filter
response can easily be realized.

To further evaluate these synthesized waveforms and compare the results consistently, we deter-
mine the matched filter outputs at the presence of Doppler shift for the following cases that the outer
codes are: (a) simply two pulses, (b) a special case of the Quadraphase sequence generated from a
13-element Barker code, (c) the derived sequence of case (b) plus -j, and (d) a complementary
sequence (generated by a pseudorandom sequence plus one). In all cases, we select the complemen-
tary array matrix A, to be the Golay mates of order 16, that is A, = (a b) with a and b defined in
Eq. (3). These two complementary sequences (the inner code) are then modulated by the outer code,
which has a pulse repetition period of T and a duty cycle of 50%. A computer program closely fol-
lowing Eq. (11) is used to generate the matched filter outputs for the above cases. The Doppler
phase shifts k are referenced to the entire code length N 2 T, i.e., 0 = 27rf(N2 7) and is varied from 0
to approximately 7r.

Case A: This is the baseline case where the pulse train contains a (t) and b (t) only. In this
case, the matched filter outputs are very much affected by the Doppler shift. According to Eq. (11),

4(r, z) = U0 (T, z) + U1 (T, z) exZ. (21)

Clearly, (T,Z) = U0 (r,z) + Ul(r,z) or OQ(,z) = U 0(T,Z) - U1 (7-,Z) when z = 0 or 1/2. Figure
12 shows the 3-D matched-filter output response |o-.,z) 2. In the figures, there are 31 (or
2 x 16 - 1) samples in the time axis and 51 samples in the frequency axis. The magnitude is nor-
malized to the response peak at T = Z = 0, i.e., Xmax = N2N2-

18
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Fig. 12 - Ambiguity diagram of the Golay complementary
sequences of length 16

Case B: Here we consider the outer code to be a special case of the Quadraphase sequence gen-
erated from a 13-element Barker code. We assume the assigned complementary sequences are
a (t), b (t), a (t), and b (t) when the outer code mk = 1, -1, j and -j, respectively. This results in
Vla(r, z) = r(T, z) and fb (, z) = Ad (r, z) in Eq. (14), and Eq. (15) becomes

|'6(r, z) • ' (' a + 'b)I O('' Z)12

N2 - 1

k e 2 (Oa
k =O2

N2 - 1

'b) 3iejwkT
k=O

With Eqs. (19) and (20), Eq. (22) can be further simplified to

|P(r, Z) < - ({a + Pb) Sinl37rz
2 sin rz

+ ±(Pa - b)L
27z 1/2

12 + cos 26irz
cos Trz

It is interesting to see that the matched filter outputs are composed of the sum and difference of the
autocorrelation functions of complementary sequences weighted by w = sin 137rz/sin rz and
W2 = (12+cos 26i7rz/cos rz)"/2, respectively.

When X * 0, 'a + Pb is small due to the property of complementary sequences. The filter
output result hence depends on the second term in which some sidelobes of 'a - b are usually not
identically zeros. Clearly the second term, and hence the matched filter output, is minimized if we
can find a good outer code such that the weight of 'Pa - b is relatively flat and bounded. It is
indeed the case here. Figure 13 shows the ambiguity diagram of the Golay sequences of length 16
outercoded by a modified Quadraphase code. It appears that the output responses, except at zero
Doppler shift, demonstrate much better performance compared with that shown in Case A. For exam-
ple, for a Doppler shift of 0.87r over the entire pulse train, the main peak sidelobe is about -47 dB
compared to -19 dB in Fig. 12 of Case A. In both cases, the reduction of the matched main peak is
nearly the same.

19
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Fig. 13 - Ambiguity diagram of the Golay sequences outercoded
by a modified Quadraphase code

Note that the weighting function wI is oscillatory having nulls at the frequencies of z n /13,
n = 1, 2, . .. Even at the matched point = 0, the result of X = 0 is expected at the above fre-
quencies. Also, in the above, the resulting synthesized waveform is actually a binary sequence (due to
simplification) and [mk = [a, a, b, b, a, b, a, b, a, b, b, a, a. There are 7 a's and 6 b's in the
sequence. The unequal numbers of a and b result in nonzero sidelobes of the matched filter output at
zero Doppler shift (Fig. 13).

Case C: In this case, we form a new outer code, i.e., 1, j, -1, -j, 1, -j, 1, -j, 1, -j, -1,
j, 1, -j, which is obtained by adding -j to the previous Quadraphase sequence generated from a 13-
element Barker code. In other words, one more pulse coded by b is concatenated to the binary
sequence [Mkj derived in Case B. The resulting sequence contains equal numbers of a's and b's.
Zero sidelobe response is thus preserved for the matched filter output when the Doppler shift is
absent. Figure 14 shows the ambiguity diagram of this synthesized waveform. Clearly the matched
filter outputs for this synthesized waveform perform superior to the corresponding ones as seen in
Cases A and B.

Case D: The case that the outer code be a complementary as suggested in Ref. 11 is simulated
here. We select the outer code S as a pseudorandom sequence plus one. For the code length to be
closer to 14 as used in the previous examples, we consider that the pseudorandom sequence has a
code length of 15 and is generated by a polynomial of 023 in octal. We also choose the initial condi-
tion of 7 in octal, which results in a lowest peak sidelobe of 3 or of 10 log (3/15)2 dB as normalized
to the mainlobe peak. It is easy to derive that S = t0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0.
With this outer code modulating the complementary sequences a and b, the matched filter output
response is shown in Fig. 15. As before, we vary the Doppler shift over the entire pulse train from 0
to r. The results show improvement in radar performance but are not as good as in Case C when
both are compared to the baseline Case A.
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4. DISCUSSION AND CONCLUSIONS

In this report, use of radar pulse compression against EMI is analyzed. We show that mutually
orthogonal waveforms specifically derived from complementary coded signals are fundamentally
applicable in solving EMI problems without degrading the radar performance. We consider transmit-
ted multiple-pulsed (dissimilar) waveforms as a burst of pulses that are pulse-compressed by comple-
mentary sequences. We then search a class of these characterized signals in which the property of
mutual orthogonality is attained. As a result, different signals in a specifically derived set can be
assigned to different radars on the same or different platforms in which the signals are mutually
orthogonal in the sense that cross-correlation of signals is zero. A radar alone processes the signals
and suppresses the ambiguous range targets or clutter. Among different radars, interference is elim-
inated at least over the unambiguous range due to mutual orthogonality of the multiple-pulsed
waveforms being used. Synchronization among multiple radars may be effective in reducing prob-
lems associated with cross-correlation in different unambiguous range intervals.

However, imperfection of orthogonality is observed in the presence of Doppler shift. In consid-
ering severe Doppler shift, Doppler filter bank receivers can be practically implemented to process
the target signals. Otherwise, this undesirable effect may be partially compensated for through
advanced waveform synthesis. We describe the option of using complementary coded signals incor-
porated with an inner-outer coding scheme. We generate the characteristic ambiguity diagram of a
synthesized waveform composed of a simple pair of Golay sequences outercoded by a pseudorandom-
code-generated complementary sequence. If the outer code is chosen from a modified Quadraphase
code, even better waveform characteristics can be achieved. Both synthesized waveforms perform
superior to the baseline case where the signal is simply two pulses and coded by the Golay sequences.

In conclusion, with appropriate use of the multiple-pulsed waveforms selected from a derived set
of complementary coded signals, the radar would suppress interference from other radar sources. In
addition, stationary targets or clutter from ambiguous/mismatched range intervals may also be elim-
inated. In the future, we plan to generalize this fundamental principle, perhaps through waveform
synthesis and also to search for best seed matrices and various orthogonal transformations in obtaining
new signal sets of interest. It would be ideal if the described zero autocorrelation (except at the
matched point) and zero cross-correlation between signals could be extended over ambiguous range
intervals and also be valid in the presence of Doppler shift.
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